update-model-package
--model-package-arn <value>
[--model-approval-status <value>]
[--approval-description <value>]
[--customer-metadata-properties <value>]
[--customer-metadata-properties-to-remove <value>]
[--additional-inference-specifications-to-add <value>]
[--inference-specification <value>]
[--source-uri <value>]
[--model-card <value>]
[--model-life-cycle <value>]
[--client-token <value>]
[--cli-input-json | --cli-input-yaml]
[--generate-cli-skeleton <value>]
[--debug]
[--endpoint-url <value>]
[--no-verify-ssl]
[--no-paginate]
[--output <value>]
[--query <value>]
[--profile <value>]
[--region <value>]
[--version <value>]
[--color <value>]
[--no-sign-request]
[--ca-bundle <value>]
[--cli-read-timeout <value>]
[--cli-connect-timeout <value>]
[--cli-binary-format <value>]
[--no-cli-pager]
[--cli-auto-prompt]
[--no-cli-auto-prompt]
--model-package-arn
(string)
The Amazon Resource Name (ARN) of the model package.
--model-approval-status
(string)
The approval status of the model.
Possible values:
Approved
Rejected
PendingManualApproval
--approval-description
(string)
A description for the approval status of the model.
--customer-metadata-properties
(map)
The metadata properties associated with the model package versions.
key -> (string)
value -> (string)
Shorthand Syntax:
KeyName1=string,KeyName2=string
JSON Syntax:
{"string": "string"
...}
--customer-metadata-properties-to-remove
(list)
The metadata properties associated with the model package versions to remove.
(string)
Syntax:
"string" "string" ...
--additional-inference-specifications-to-add
(list)
An array of additional Inference Specification objects to be added to the existing array additional Inference Specification. Total number of additional Inference Specifications can not exceed 15. Each additional Inference Specification specifies artifacts based on this model package that can be used on inference endpoints. Generally used with SageMaker Neo to store the compiled artifacts.
(structure)
A structure of additional Inference Specification. Additional Inference Specification specifies details about inference jobs that can be run with models based on this model package
Name -> (string)
A unique name to identify the additional inference specification. The name must be unique within the list of your additional inference specifications for a particular model package.Description -> (string)
A description of the additional Inference specificationContainers -> (list)
The Amazon ECR registry path of the Docker image that contains the inference code.
(structure)
Describes the Docker container for the model package.
ContainerHostname -> (string)
The DNS host name for the Docker container.Image -> (string)
The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.
If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both
registry/repository[:tag]
andregistry/repository[@digest]
image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker .ImageDigest -> (string)
An MD5 hash of the training algorithm that identifies the Docker image used for training.ModelDataUrl -> (string)
The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single
gzip
compressed tar archive (.tar.gz
suffix).Note
The model artifacts must be in an S3 bucket that is in the same region as the model package.ModelDataSource -> (structure)
Specifies the location of ML model data to deploy during endpoint creation.
S3DataSource -> (structure)
Specifies the S3 location of ML model data to deploy.
S3Uri -> (string)
Specifies the S3 path of ML model data to deploy.S3DataType -> (string)
Specifies the type of ML model data to deploy.
If you choose
S3Prefix
,S3Uri
identifies a key name prefix. SageMaker uses all objects that match the specified key name prefix as part of the ML model data to deploy. A valid key name prefix identified byS3Uri
always ends with a forward slash (/).If you choose
S3Object
,S3Uri
identifies an object that is the ML model data to deploy.CompressionType -> (string)
Specifies how the ML model data is prepared.
If you choose
Gzip
and chooseS3Object
as the value ofS3DataType
,S3Uri
identifies an object that is a gzip-compressed TAR archive. SageMaker will attempt to decompress and untar the object during model deployment.If you choose
None
and choooseS3Object
as the value ofS3DataType
,S3Uri
identifies an object that represents an uncompressed ML model to deploy.If you choose None and choose
S3Prefix
as the value ofS3DataType
,S3Uri
identifies a key name prefix, under which all objects represents the uncompressed ML model to deploy.If you choose None, then SageMaker will follow rules below when creating model data files under /opt/ml/model directory for use by your inference code:
- If you choose
S3Object
as the value ofS3DataType
, then SageMaker will split the key of the S3 object referenced byS3Uri
by slash (/), and use the last part as the filename of the file holding the content of the S3 object.- If you choose
S3Prefix
as the value ofS3DataType
, then for each S3 object under the key name pefix referenced byS3Uri
, SageMaker will trim its key by the prefix, and use the remainder as the path (relative to/opt/ml/model
) of the file holding the content of the S3 object. SageMaker will split the remainder by slash (/), using intermediate parts as directory names and the last part as filename of the file holding the content of the S3 object.- Do not use any of the following as file names or directory names:
- An empty or blank string
- A string which contains null bytes
- A string longer than 255 bytes
- A single dot (
.
)- A double dot (
..
)- Ambiguous file names will result in model deployment failure. For example, if your uncompressed ML model consists of two S3 objects
s3://mybucket/model/weights
ands3://mybucket/model/weights/part1
and you specifys3://mybucket/model/
as the value ofS3Uri
andS3Prefix
as the value ofS3DataType
, then it will result in name clash between/opt/ml/model/weights
(a regular file) and/opt/ml/model/weights/
(a directory).- Do not organize the model artifacts in S3 console using folders . When you create a folder in S3 console, S3 creates a 0-byte object with a key set to the folder name you provide. They key of the 0-byte object ends with a slash (/) which violates SageMaker restrictions on model artifact file names, leading to model deployment failure.
ModelAccessConfig -> (structure)
Specifies the access configuration file for the ML model. You can explicitly accept the model end-user license agreement (EULA) within the
ModelAccessConfig
. You are responsible for reviewing and complying with any applicable license terms and making sure they are acceptable for your use case before downloading or using a model.AcceptEula -> (boolean)
Specifies agreement to the model end-user license agreement (EULA). TheAcceptEula
value must be explicitly defined asTrue
in order to accept the EULA that this model requires. You are responsible for reviewing and complying with any applicable license terms and making sure they are acceptable for your use case before downloading or using a model.HubAccessConfig -> (structure)
Configuration information for hub access.
HubContentArn -> (string)
The ARN of the hub content for which deployment access is allowed.ManifestS3Uri -> (string)
The Amazon S3 URI of the manifest file. The manifest file is a CSV file that stores the artifact locations.ETag -> (string)
The ETag associated with S3 URI.ManifestEtag -> (string)
The ETag associated with Manifest S3URI.ProductId -> (string)
The Amazon Web Services Marketplace product ID of the model package.Environment -> (map)
The environment variables to set in the Docker container. Each key and value in the
Environment
string to string map can have length of up to 1024. We support up to 16 entries in the map.key -> (string)
value -> (string)
ModelInput -> (structure)
A structure with Model Input details.
DataInputConfig -> (string)
The input configuration object for the model.Framework -> (string)
The machine learning framework of the model package container image.FrameworkVersion -> (string)
The framework version of the Model Package Container Image.NearestModelName -> (string)
The name of a pre-trained machine learning benchmarked by Amazon SageMaker Inference Recommender model that matches your model. You can find a list of benchmarked models by callingListModelMetadata
.AdditionalS3DataSource -> (structure)
The additional data source that is used during inference in the Docker container for your model package.
S3DataType -> (string)
The data type of the additional data source that you specify for use in inference or training.S3Uri -> (string)
The uniform resource identifier (URI) used to identify an additional data source used in inference or training.CompressionType -> (string)
The type of compression used for an additional data source used in inference or training. SpecifyNone
if your additional data source is not compressed.ETag -> (string)
The ETag associated with S3 URI.ModelDataETag -> (string)
The ETag associated with Model Data URL.SupportedTransformInstanceTypes -> (list)
A list of the instance types on which a transformation job can be run or on which an endpoint can be deployed.
(string)
SupportedRealtimeInferenceInstanceTypes -> (list)
A list of the instance types that are used to generate inferences in real-time.
(string)
SupportedContentTypes -> (list)
The supported MIME types for the input data.
(string)
SupportedResponseMIMETypes -> (list)
The supported MIME types for the output data.
(string)
JSON Syntax:
[
{
"Name": "string",
"Description": "string",
"Containers": [
{
"ContainerHostname": "string",
"Image": "string",
"ImageDigest": "string",
"ModelDataUrl": "string",
"ModelDataSource": {
"S3DataSource": {
"S3Uri": "string",
"S3DataType": "S3Prefix"|"S3Object",
"CompressionType": "None"|"Gzip",
"ModelAccessConfig": {
"AcceptEula": true|false
},
"HubAccessConfig": {
"HubContentArn": "string"
},
"ManifestS3Uri": "string",
"ETag": "string",
"ManifestEtag": "string"
}
},
"ProductId": "string",
"Environment": {"string": "string"
...},
"ModelInput": {
"DataInputConfig": "string"
},
"Framework": "string",
"FrameworkVersion": "string",
"NearestModelName": "string",
"AdditionalS3DataSource": {
"S3DataType": "S3Object"|"S3Prefix",
"S3Uri": "string",
"CompressionType": "None"|"Gzip",
"ETag": "string"
},
"ModelDataETag": "string"
}
...
],
"SupportedTransformInstanceTypes": ["ml.m4.xlarge"|"ml.m4.2xlarge"|"ml.m4.4xlarge"|"ml.m4.10xlarge"|"ml.m4.16xlarge"|"ml.c4.xlarge"|"ml.c4.2xlarge"|"ml.c4.4xlarge"|"ml.c4.8xlarge"|"ml.p2.xlarge"|"ml.p2.8xlarge"|"ml.p2.16xlarge"|"ml.p3.2xlarge"|"ml.p3.8xlarge"|"ml.p3.16xlarge"|"ml.c5.xlarge"|"ml.c5.2xlarge"|"ml.c5.4xlarge"|"ml.c5.9xlarge"|"ml.c5.18xlarge"|"ml.m5.large"|"ml.m5.xlarge"|"ml.m5.2xlarge"|"ml.m5.4xlarge"|"ml.m5.12xlarge"|"ml.m5.24xlarge"|"ml.m6i.large"|"ml.m6i.xlarge"|"ml.m6i.2xlarge"|"ml.m6i.4xlarge"|"ml.m6i.8xlarge"|"ml.m6i.12xlarge"|"ml.m6i.16xlarge"|"ml.m6i.24xlarge"|"ml.m6i.32xlarge"|"ml.c6i.large"|"ml.c6i.xlarge"|"ml.c6i.2xlarge"|"ml.c6i.4xlarge"|"ml.c6i.8xlarge"|"ml.c6i.12xlarge"|"ml.c6i.16xlarge"|"ml.c6i.24xlarge"|"ml.c6i.32xlarge"|"ml.r6i.large"|"ml.r6i.xlarge"|"ml.r6i.2xlarge"|"ml.r6i.4xlarge"|"ml.r6i.8xlarge"|"ml.r6i.12xlarge"|"ml.r6i.16xlarge"|"ml.r6i.24xlarge"|"ml.r6i.32xlarge"|"ml.m7i.large"|"ml.m7i.xlarge"|"ml.m7i.2xlarge"|"ml.m7i.4xlarge"|"ml.m7i.8xlarge"|"ml.m7i.12xlarge"|"ml.m7i.16xlarge"|"ml.m7i.24xlarge"|"ml.m7i.48xlarge"|"ml.c7i.large"|"ml.c7i.xlarge"|"ml.c7i.2xlarge"|"ml.c7i.4xlarge"|"ml.c7i.8xlarge"|"ml.c7i.12xlarge"|"ml.c7i.16xlarge"|"ml.c7i.24xlarge"|"ml.c7i.48xlarge"|"ml.r7i.large"|"ml.r7i.xlarge"|"ml.r7i.2xlarge"|"ml.r7i.4xlarge"|"ml.r7i.8xlarge"|"ml.r7i.12xlarge"|"ml.r7i.16xlarge"|"ml.r7i.24xlarge"|"ml.r7i.48xlarge"|"ml.g4dn.xlarge"|"ml.g4dn.2xlarge"|"ml.g4dn.4xlarge"|"ml.g4dn.8xlarge"|"ml.g4dn.12xlarge"|"ml.g4dn.16xlarge"|"ml.g5.xlarge"|"ml.g5.2xlarge"|"ml.g5.4xlarge"|"ml.g5.8xlarge"|"ml.g5.12xlarge"|"ml.g5.16xlarge"|"ml.g5.24xlarge"|"ml.g5.48xlarge"|"ml.trn1.2xlarge"|"ml.trn1.32xlarge"|"ml.inf2.xlarge"|"ml.inf2.8xlarge"|"ml.inf2.24xlarge"|"ml.inf2.48xlarge", ...],
"SupportedRealtimeInferenceInstanceTypes": ["ml.t2.medium"|"ml.t2.large"|"ml.t2.xlarge"|"ml.t2.2xlarge"|"ml.m4.xlarge"|"ml.m4.2xlarge"|"ml.m4.4xlarge"|"ml.m4.10xlarge"|"ml.m4.16xlarge"|"ml.m5.large"|"ml.m5.xlarge"|"ml.m5.2xlarge"|"ml.m5.4xlarge"|"ml.m5.12xlarge"|"ml.m5.24xlarge"|"ml.m5d.large"|"ml.m5d.xlarge"|"ml.m5d.2xlarge"|"ml.m5d.4xlarge"|"ml.m5d.12xlarge"|"ml.m5d.24xlarge"|"ml.c4.large"|"ml.c4.xlarge"|"ml.c4.2xlarge"|"ml.c4.4xlarge"|"ml.c4.8xlarge"|"ml.p2.xlarge"|"ml.p2.8xlarge"|"ml.p2.16xlarge"|"ml.p3.2xlarge"|"ml.p3.8xlarge"|"ml.p3.16xlarge"|"ml.c5.large"|"ml.c5.xlarge"|"ml.c5.2xlarge"|"ml.c5.4xlarge"|"ml.c5.9xlarge"|"ml.c5.18xlarge"|"ml.c5d.large"|"ml.c5d.xlarge"|"ml.c5d.2xlarge"|"ml.c5d.4xlarge"|"ml.c5d.9xlarge"|"ml.c5d.18xlarge"|"ml.g4dn.xlarge"|"ml.g4dn.2xlarge"|"ml.g4dn.4xlarge"|"ml.g4dn.8xlarge"|"ml.g4dn.12xlarge"|"ml.g4dn.16xlarge"|"ml.r5.large"|"ml.r5.xlarge"|"ml.r5.2xlarge"|"ml.r5.4xlarge"|"ml.r5.12xlarge"|"ml.r5.24xlarge"|"ml.r5d.large"|"ml.r5d.xlarge"|"ml.r5d.2xlarge"|"ml.r5d.4xlarge"|"ml.r5d.12xlarge"|"ml.r5d.24xlarge"|"ml.inf1.xlarge"|"ml.inf1.2xlarge"|"ml.inf1.6xlarge"|"ml.inf1.24xlarge"|"ml.dl1.24xlarge"|"ml.c6i.large"|"ml.c6i.xlarge"|"ml.c6i.2xlarge"|"ml.c6i.4xlarge"|"ml.c6i.8xlarge"|"ml.c6i.12xlarge"|"ml.c6i.16xlarge"|"ml.c6i.24xlarge"|"ml.c6i.32xlarge"|"ml.m6i.large"|"ml.m6i.xlarge"|"ml.m6i.2xlarge"|"ml.m6i.4xlarge"|"ml.m6i.8xlarge"|"ml.m6i.12xlarge"|"ml.m6i.16xlarge"|"ml.m6i.24xlarge"|"ml.m6i.32xlarge"|"ml.r6i.large"|"ml.r6i.xlarge"|"ml.r6i.2xlarge"|"ml.r6i.4xlarge"|"ml.r6i.8xlarge"|"ml.r6i.12xlarge"|"ml.r6i.16xlarge"|"ml.r6i.24xlarge"|"ml.r6i.32xlarge"|"ml.g5.xlarge"|"ml.g5.2xlarge"|"ml.g5.4xlarge"|"ml.g5.8xlarge"|"ml.g5.12xlarge"|"ml.g5.16xlarge"|"ml.g5.24xlarge"|"ml.g5.48xlarge"|"ml.g6.xlarge"|"ml.g6.2xlarge"|"ml.g6.4xlarge"|"ml.g6.8xlarge"|"ml.g6.12xlarge"|"ml.g6.16xlarge"|"ml.g6.24xlarge"|"ml.g6.48xlarge"|"ml.g6e.xlarge"|"ml.g6e.2xlarge"|"ml.g6e.4xlarge"|"ml.g6e.8xlarge"|"ml.g6e.12xlarge"|"ml.g6e.16xlarge"|"ml.g6e.24xlarge"|"ml.g6e.48xlarge"|"ml.p4d.24xlarge"|"ml.c7g.large"|"ml.c7g.xlarge"|"ml.c7g.2xlarge"|"ml.c7g.4xlarge"|"ml.c7g.8xlarge"|"ml.c7g.12xlarge"|"ml.c7g.16xlarge"|"ml.m6g.large"|"ml.m6g.xlarge"|"ml.m6g.2xlarge"|"ml.m6g.4xlarge"|"ml.m6g.8xlarge"|"ml.m6g.12xlarge"|"ml.m6g.16xlarge"|"ml.m6gd.large"|"ml.m6gd.xlarge"|"ml.m6gd.2xlarge"|"ml.m6gd.4xlarge"|"ml.m6gd.8xlarge"|"ml.m6gd.12xlarge"|"ml.m6gd.16xlarge"|"ml.c6g.large"|"ml.c6g.xlarge"|"ml.c6g.2xlarge"|"ml.c6g.4xlarge"|"ml.c6g.8xlarge"|"ml.c6g.12xlarge"|"ml.c6g.16xlarge"|"ml.c6gd.large"|"ml.c6gd.xlarge"|"ml.c6gd.2xlarge"|"ml.c6gd.4xlarge"|"ml.c6gd.8xlarge"|"ml.c6gd.12xlarge"|"ml.c6gd.16xlarge"|"ml.c6gn.large"|"ml.c6gn.xlarge"|"ml.c6gn.2xlarge"|"ml.c6gn.4xlarge"|"ml.c6gn.8xlarge"|"ml.c6gn.12xlarge"|"ml.c6gn.16xlarge"|"ml.r6g.large"|"ml.r6g.xlarge"|"ml.r6g.2xlarge"|"ml.r6g.4xlarge"|"ml.r6g.8xlarge"|"ml.r6g.12xlarge"|"ml.r6g.16xlarge"|"ml.r6gd.large"|"ml.r6gd.xlarge"|"ml.r6gd.2xlarge"|"ml.r6gd.4xlarge"|"ml.r6gd.8xlarge"|"ml.r6gd.12xlarge"|"ml.r6gd.16xlarge"|"ml.p4de.24xlarge"|"ml.trn1.2xlarge"|"ml.trn1.32xlarge"|"ml.trn1n.32xlarge"|"ml.trn2.48xlarge"|"ml.inf2.xlarge"|"ml.inf2.8xlarge"|"ml.inf2.24xlarge"|"ml.inf2.48xlarge"|"ml.p5.48xlarge"|"ml.p5e.48xlarge"|"ml.m7i.large"|"ml.m7i.xlarge"|"ml.m7i.2xlarge"|"ml.m7i.4xlarge"|"ml.m7i.8xlarge"|"ml.m7i.12xlarge"|"ml.m7i.16xlarge"|"ml.m7i.24xlarge"|"ml.m7i.48xlarge"|"ml.c7i.large"|"ml.c7i.xlarge"|"ml.c7i.2xlarge"|"ml.c7i.4xlarge"|"ml.c7i.8xlarge"|"ml.c7i.12xlarge"|"ml.c7i.16xlarge"|"ml.c7i.24xlarge"|"ml.c7i.48xlarge"|"ml.r7i.large"|"ml.r7i.xlarge"|"ml.r7i.2xlarge"|"ml.r7i.4xlarge"|"ml.r7i.8xlarge"|"ml.r7i.12xlarge"|"ml.r7i.16xlarge"|"ml.r7i.24xlarge"|"ml.r7i.48xlarge", ...],
"SupportedContentTypes": ["string", ...],
"SupportedResponseMIMETypes": ["string", ...]
}
...
]
--inference-specification
(structure)
Specifies details about inference jobs that you can run with models based on this model package, including the following information:
- The Amazon ECR paths of containers that contain the inference code and model artifacts.
- The instance types that the model package supports for transform jobs and real-time endpoints used for inference.
- The input and output content formats that the model package supports for inference.
Containers -> (list)
The Amazon ECR registry path of the Docker image that contains the inference code.
(structure)
Describes the Docker container for the model package.
ContainerHostname -> (string)
The DNS host name for the Docker container.Image -> (string)
The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.
If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both
registry/repository[:tag]
andregistry/repository[@digest]
image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker .ImageDigest -> (string)
An MD5 hash of the training algorithm that identifies the Docker image used for training.ModelDataUrl -> (string)
The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single
gzip
compressed tar archive (.tar.gz
suffix).Note
The model artifacts must be in an S3 bucket that is in the same region as the model package.ModelDataSource -> (structure)
Specifies the location of ML model data to deploy during endpoint creation.
S3DataSource -> (structure)
Specifies the S3 location of ML model data to deploy.
S3Uri -> (string)
Specifies the S3 path of ML model data to deploy.S3DataType -> (string)
Specifies the type of ML model data to deploy.
If you choose
S3Prefix
,S3Uri
identifies a key name prefix. SageMaker uses all objects that match the specified key name prefix as part of the ML model data to deploy. A valid key name prefix identified byS3Uri
always ends with a forward slash (/).If you choose
S3Object
,S3Uri
identifies an object that is the ML model data to deploy.CompressionType -> (string)
Specifies how the ML model data is prepared.
If you choose
Gzip
and chooseS3Object
as the value ofS3DataType
,S3Uri
identifies an object that is a gzip-compressed TAR archive. SageMaker will attempt to decompress and untar the object during model deployment.If you choose
None
and choooseS3Object
as the value ofS3DataType
,S3Uri
identifies an object that represents an uncompressed ML model to deploy.If you choose None and choose
S3Prefix
as the value ofS3DataType
,S3Uri
identifies a key name prefix, under which all objects represents the uncompressed ML model to deploy.If you choose None, then SageMaker will follow rules below when creating model data files under /opt/ml/model directory for use by your inference code:
- If you choose
S3Object
as the value ofS3DataType
, then SageMaker will split the key of the S3 object referenced byS3Uri
by slash (/), and use the last part as the filename of the file holding the content of the S3 object.- If you choose
S3Prefix
as the value ofS3DataType
, then for each S3 object under the key name pefix referenced byS3Uri
, SageMaker will trim its key by the prefix, and use the remainder as the path (relative to/opt/ml/model
) of the file holding the content of the S3 object. SageMaker will split the remainder by slash (/), using intermediate parts as directory names and the last part as filename of the file holding the content of the S3 object.- Do not use any of the following as file names or directory names:
- An empty or blank string
- A string which contains null bytes
- A string longer than 255 bytes
- A single dot (
.
)- A double dot (
..
)- Ambiguous file names will result in model deployment failure. For example, if your uncompressed ML model consists of two S3 objects
s3://mybucket/model/weights
ands3://mybucket/model/weights/part1
and you specifys3://mybucket/model/
as the value ofS3Uri
andS3Prefix
as the value ofS3DataType
, then it will result in name clash between/opt/ml/model/weights
(a regular file) and/opt/ml/model/weights/
(a directory).- Do not organize the model artifacts in S3 console using folders . When you create a folder in S3 console, S3 creates a 0-byte object with a key set to the folder name you provide. They key of the 0-byte object ends with a slash (/) which violates SageMaker restrictions on model artifact file names, leading to model deployment failure.
ModelAccessConfig -> (structure)
Specifies the access configuration file for the ML model. You can explicitly accept the model end-user license agreement (EULA) within the
ModelAccessConfig
. You are responsible for reviewing and complying with any applicable license terms and making sure they are acceptable for your use case before downloading or using a model.AcceptEula -> (boolean)
Specifies agreement to the model end-user license agreement (EULA). TheAcceptEula
value must be explicitly defined asTrue
in order to accept the EULA that this model requires. You are responsible for reviewing and complying with any applicable license terms and making sure they are acceptable for your use case before downloading or using a model.HubAccessConfig -> (structure)
Configuration information for hub access.
HubContentArn -> (string)
The ARN of the hub content for which deployment access is allowed.ManifestS3Uri -> (string)
The Amazon S3 URI of the manifest file. The manifest file is a CSV file that stores the artifact locations.ETag -> (string)
The ETag associated with S3 URI.ManifestEtag -> (string)
The ETag associated with Manifest S3URI.ProductId -> (string)
The Amazon Web Services Marketplace product ID of the model package.Environment -> (map)
The environment variables to set in the Docker container. Each key and value in the
Environment
string to string map can have length of up to 1024. We support up to 16 entries in the map.key -> (string)
value -> (string)
ModelInput -> (structure)
A structure with Model Input details.
DataInputConfig -> (string)
The input configuration object for the model.Framework -> (string)
The machine learning framework of the model package container image.FrameworkVersion -> (string)
The framework version of the Model Package Container Image.NearestModelName -> (string)
The name of a pre-trained machine learning benchmarked by Amazon SageMaker Inference Recommender model that matches your model. You can find a list of benchmarked models by callingListModelMetadata
.AdditionalS3DataSource -> (structure)
The additional data source that is used during inference in the Docker container for your model package.
S3DataType -> (string)
The data type of the additional data source that you specify for use in inference or training.S3Uri -> (string)
The uniform resource identifier (URI) used to identify an additional data source used in inference or training.CompressionType -> (string)
The type of compression used for an additional data source used in inference or training. SpecifyNone
if your additional data source is not compressed.ETag -> (string)
The ETag associated with S3 URI.ModelDataETag -> (string)
The ETag associated with Model Data URL.SupportedTransformInstanceTypes -> (list)
A list of the instance types on which a transformation job can be run or on which an endpoint can be deployed.
This parameter is required for unversioned models, and optional for versioned models.
(string)
SupportedRealtimeInferenceInstanceTypes -> (list)
A list of the instance types that are used to generate inferences in real-time.
This parameter is required for unversioned models, and optional for versioned models.
(string)
SupportedContentTypes -> (list)
The supported MIME types for the input data.
(string)
SupportedResponseMIMETypes -> (list)
The supported MIME types for the output data.
(string)
JSON Syntax:
{
"Containers": [
{
"ContainerHostname": "string",
"Image": "string",
"ImageDigest": "string",
"ModelDataUrl": "string",
"ModelDataSource": {
"S3DataSource": {
"S3Uri": "string",
"S3DataType": "S3Prefix"|"S3Object",
"CompressionType": "None"|"Gzip",
"ModelAccessConfig": {
"AcceptEula": true|false
},
"HubAccessConfig": {
"HubContentArn": "string"
},
"ManifestS3Uri": "string",
"ETag": "string",
"ManifestEtag": "string"
}
},
"ProductId": "string",
"Environment": {"string": "string"
...},
"ModelInput": {
"DataInputConfig": "string"
},
"Framework": "string",
"FrameworkVersion": "string",
"NearestModelName": "string",
"AdditionalS3DataSource": {
"S3DataType": "S3Object"|"S3Prefix",
"S3Uri": "string",
"CompressionType": "None"|"Gzip",
"ETag": "string"
},
"ModelDataETag": "string"
}
...
],
"SupportedTransformInstanceTypes": ["ml.m4.xlarge"|"ml.m4.2xlarge"|"ml.m4.4xlarge"|"ml.m4.10xlarge"|"ml.m4.16xlarge"|"ml.c4.xlarge"|"ml.c4.2xlarge"|"ml.c4.4xlarge"|"ml.c4.8xlarge"|"ml.p2.xlarge"|"ml.p2.8xlarge"|"ml.p2.16xlarge"|"ml.p3.2xlarge"|"ml.p3.8xlarge"|"ml.p3.16xlarge"|"ml.c5.xlarge"|"ml.c5.2xlarge"|"ml.c5.4xlarge"|"ml.c5.9xlarge"|"ml.c5.18xlarge"|"ml.m5.large"|"ml.m5.xlarge"|"ml.m5.2xlarge"|"ml.m5.4xlarge"|"ml.m5.12xlarge"|"ml.m5.24xlarge"|"ml.m6i.large"|"ml.m6i.xlarge"|"ml.m6i.2xlarge"|"ml.m6i.4xlarge"|"ml.m6i.8xlarge"|"ml.m6i.12xlarge"|"ml.m6i.16xlarge"|"ml.m6i.24xlarge"|"ml.m6i.32xlarge"|"ml.c6i.large"|"ml.c6i.xlarge"|"ml.c6i.2xlarge"|"ml.c6i.4xlarge"|"ml.c6i.8xlarge"|"ml.c6i.12xlarge"|"ml.c6i.16xlarge"|"ml.c6i.24xlarge"|"ml.c6i.32xlarge"|"ml.r6i.large"|"ml.r6i.xlarge"|"ml.r6i.2xlarge"|"ml.r6i.4xlarge"|"ml.r6i.8xlarge"|"ml.r6i.12xlarge"|"ml.r6i.16xlarge"|"ml.r6i.24xlarge"|"ml.r6i.32xlarge"|"ml.m7i.large"|"ml.m7i.xlarge"|"ml.m7i.2xlarge"|"ml.m7i.4xlarge"|"ml.m7i.8xlarge"|"ml.m7i.12xlarge"|"ml.m7i.16xlarge"|"ml.m7i.24xlarge"|"ml.m7i.48xlarge"|"ml.c7i.large"|"ml.c7i.xlarge"|"ml.c7i.2xlarge"|"ml.c7i.4xlarge"|"ml.c7i.8xlarge"|"ml.c7i.12xlarge"|"ml.c7i.16xlarge"|"ml.c7i.24xlarge"|"ml.c7i.48xlarge"|"ml.r7i.large"|"ml.r7i.xlarge"|"ml.r7i.2xlarge"|"ml.r7i.4xlarge"|"ml.r7i.8xlarge"|"ml.r7i.12xlarge"|"ml.r7i.16xlarge"|"ml.r7i.24xlarge"|"ml.r7i.48xlarge"|"ml.g4dn.xlarge"|"ml.g4dn.2xlarge"|"ml.g4dn.4xlarge"|"ml.g4dn.8xlarge"|"ml.g4dn.12xlarge"|"ml.g4dn.16xlarge"|"ml.g5.xlarge"|"ml.g5.2xlarge"|"ml.g5.4xlarge"|"ml.g5.8xlarge"|"ml.g5.12xlarge"|"ml.g5.16xlarge"|"ml.g5.24xlarge"|"ml.g5.48xlarge"|"ml.trn1.2xlarge"|"ml.trn1.32xlarge"|"ml.inf2.xlarge"|"ml.inf2.8xlarge"|"ml.inf2.24xlarge"|"ml.inf2.48xlarge", ...],
"SupportedRealtimeInferenceInstanceTypes": ["ml.t2.medium"|"ml.t2.large"|"ml.t2.xlarge"|"ml.t2.2xlarge"|"ml.m4.xlarge"|"ml.m4.2xlarge"|"ml.m4.4xlarge"|"ml.m4.10xlarge"|"ml.m4.16xlarge"|"ml.m5.large"|"ml.m5.xlarge"|"ml.m5.2xlarge"|"ml.m5.4xlarge"|"ml.m5.12xlarge"|"ml.m5.24xlarge"|"ml.m5d.large"|"ml.m5d.xlarge"|"ml.m5d.2xlarge"|"ml.m5d.4xlarge"|"ml.m5d.12xlarge"|"ml.m5d.24xlarge"|"ml.c4.large"|"ml.c4.xlarge"|"ml.c4.2xlarge"|"ml.c4.4xlarge"|"ml.c4.8xlarge"|"ml.p2.xlarge"|"ml.p2.8xlarge"|"ml.p2.16xlarge"|"ml.p3.2xlarge"|"ml.p3.8xlarge"|"ml.p3.16xlarge"|"ml.c5.large"|"ml.c5.xlarge"|"ml.c5.2xlarge"|"ml.c5.4xlarge"|"ml.c5.9xlarge"|"ml.c5.18xlarge"|"ml.c5d.large"|"ml.c5d.xlarge"|"ml.c5d.2xlarge"|"ml.c5d.4xlarge"|"ml.c5d.9xlarge"|"ml.c5d.18xlarge"|"ml.g4dn.xlarge"|"ml.g4dn.2xlarge"|"ml.g4dn.4xlarge"|"ml.g4dn.8xlarge"|"ml.g4dn.12xlarge"|"ml.g4dn.16xlarge"|"ml.r5.large"|"ml.r5.xlarge"|"ml.r5.2xlarge"|"ml.r5.4xlarge"|"ml.r5.12xlarge"|"ml.r5.24xlarge"|"ml.r5d.large"|"ml.r5d.xlarge"|"ml.r5d.2xlarge"|"ml.r5d.4xlarge"|"ml.r5d.12xlarge"|"ml.r5d.24xlarge"|"ml.inf1.xlarge"|"ml.inf1.2xlarge"|"ml.inf1.6xlarge"|"ml.inf1.24xlarge"|"ml.dl1.24xlarge"|"ml.c6i.large"|"ml.c6i.xlarge"|"ml.c6i.2xlarge"|"ml.c6i.4xlarge"|"ml.c6i.8xlarge"|"ml.c6i.12xlarge"|"ml.c6i.16xlarge"|"ml.c6i.24xlarge"|"ml.c6i.32xlarge"|"ml.m6i.large"|"ml.m6i.xlarge"|"ml.m6i.2xlarge"|"ml.m6i.4xlarge"|"ml.m6i.8xlarge"|"ml.m6i.12xlarge"|"ml.m6i.16xlarge"|"ml.m6i.24xlarge"|"ml.m6i.32xlarge"|"ml.r6i.large"|"ml.r6i.xlarge"|"ml.r6i.2xlarge"|"ml.r6i.4xlarge"|"ml.r6i.8xlarge"|"ml.r6i.12xlarge"|"ml.r6i.16xlarge"|"ml.r6i.24xlarge"|"ml.r6i.32xlarge"|"ml.g5.xlarge"|"ml.g5.2xlarge"|"ml.g5.4xlarge"|"ml.g5.8xlarge"|"ml.g5.12xlarge"|"ml.g5.16xlarge"|"ml.g5.24xlarge"|"ml.g5.48xlarge"|"ml.g6.xlarge"|"ml.g6.2xlarge"|"ml.g6.4xlarge"|"ml.g6.8xlarge"|"ml.g6.12xlarge"|"ml.g6.16xlarge"|"ml.g6.24xlarge"|"ml.g6.48xlarge"|"ml.g6e.xlarge"|"ml.g6e.2xlarge"|"ml.g6e.4xlarge"|"ml.g6e.8xlarge"|"ml.g6e.12xlarge"|"ml.g6e.16xlarge"|"ml.g6e.24xlarge"|"ml.g6e.48xlarge"|"ml.p4d.24xlarge"|"ml.c7g.large"|"ml.c7g.xlarge"|"ml.c7g.2xlarge"|"ml.c7g.4xlarge"|"ml.c7g.8xlarge"|"ml.c7g.12xlarge"|"ml.c7g.16xlarge"|"ml.m6g.large"|"ml.m6g.xlarge"|"ml.m6g.2xlarge"|"ml.m6g.4xlarge"|"ml.m6g.8xlarge"|"ml.m6g.12xlarge"|"ml.m6g.16xlarge"|"ml.m6gd.large"|"ml.m6gd.xlarge"|"ml.m6gd.2xlarge"|"ml.m6gd.4xlarge"|"ml.m6gd.8xlarge"|"ml.m6gd.12xlarge"|"ml.m6gd.16xlarge"|"ml.c6g.large"|"ml.c6g.xlarge"|"ml.c6g.2xlarge"|"ml.c6g.4xlarge"|"ml.c6g.8xlarge"|"ml.c6g.12xlarge"|"ml.c6g.16xlarge"|"ml.c6gd.large"|"ml.c6gd.xlarge"|"ml.c6gd.2xlarge"|"ml.c6gd.4xlarge"|"ml.c6gd.8xlarge"|"ml.c6gd.12xlarge"|"ml.c6gd.16xlarge"|"ml.c6gn.large"|"ml.c6gn.xlarge"|"ml.c6gn.2xlarge"|"ml.c6gn.4xlarge"|"ml.c6gn.8xlarge"|"ml.c6gn.12xlarge"|"ml.c6gn.16xlarge"|"ml.r6g.large"|"ml.r6g.xlarge"|"ml.r6g.2xlarge"|"ml.r6g.4xlarge"|"ml.r6g.8xlarge"|"ml.r6g.12xlarge"|"ml.r6g.16xlarge"|"ml.r6gd.large"|"ml.r6gd.xlarge"|"ml.r6gd.2xlarge"|"ml.r6gd.4xlarge"|"ml.r6gd.8xlarge"|"ml.r6gd.12xlarge"|"ml.r6gd.16xlarge"|"ml.p4de.24xlarge"|"ml.trn1.2xlarge"|"ml.trn1.32xlarge"|"ml.trn1n.32xlarge"|"ml.trn2.48xlarge"|"ml.inf2.xlarge"|"ml.inf2.8xlarge"|"ml.inf2.24xlarge"|"ml.inf2.48xlarge"|"ml.p5.48xlarge"|"ml.p5e.48xlarge"|"ml.m7i.large"|"ml.m7i.xlarge"|"ml.m7i.2xlarge"|"ml.m7i.4xlarge"|"ml.m7i.8xlarge"|"ml.m7i.12xlarge"|"ml.m7i.16xlarge"|"ml.m7i.24xlarge"|"ml.m7i.48xlarge"|"ml.c7i.large"|"ml.c7i.xlarge"|"ml.c7i.2xlarge"|"ml.c7i.4xlarge"|"ml.c7i.8xlarge"|"ml.c7i.12xlarge"|"ml.c7i.16xlarge"|"ml.c7i.24xlarge"|"ml.c7i.48xlarge"|"ml.r7i.large"|"ml.r7i.xlarge"|"ml.r7i.2xlarge"|"ml.r7i.4xlarge"|"ml.r7i.8xlarge"|"ml.r7i.12xlarge"|"ml.r7i.16xlarge"|"ml.r7i.24xlarge"|"ml.r7i.48xlarge", ...],
"SupportedContentTypes": ["string", ...],
"SupportedResponseMIMETypes": ["string", ...]
}
--source-uri
(string)
The URI of the source for the model package.
--model-card
(structure)
The model card associated with the model package. Since
ModelPackageModelCard
is tied to a model package, it is a specific usage of a model card and its schema is simplified compared to the schema ofModelCard
. TheModelPackageModelCard
schema does not includemodel_package_details
, andmodel_overview
is composed of themodel_creator
andmodel_artifact
properties. For more information about the model package model card schema, see Model package model card schema . For more information about the model card associated with the model package, see View the Details of a Model Version .ModelCardContent -> (string)
The content of the model card. The content must follow the schema described in Model Package Model Card Schema .ModelCardStatus -> (string)
The approval status of the model card within your organization. Different organizations might have different criteria for model card review and approval.
Draft
: The model card is a work in progress.PendingReview
: The model card is pending review.Approved
: The model card is approved.Archived
: The model card is archived. No more updates can be made to the model card content. If you try to update the model card content, you will receive the messageModel Card is in Archived state
.
Shorthand Syntax:
ModelCardContent=string,ModelCardStatus=string
JSON Syntax:
{
"ModelCardContent": "string",
"ModelCardStatus": "Draft"|"PendingReview"|"Approved"|"Archived"
}
--model-life-cycle
(structure)
A structure describing the current state of the model in its life cycle.
Stage -> (string)
The current stage in the model life cycle.StageStatus -> (string)
The current status of a stage in model life cycle.StageDescription -> (string)
Describes the stage related details.
Shorthand Syntax:
Stage=string,StageStatus=string,StageDescription=string
JSON Syntax:
{
"Stage": "string",
"StageStatus": "string",
"StageDescription": "string"
}
--client-token
(string)
A unique token that guarantees that the call to this API is idempotent.
--cli-input-json
| --cli-input-yaml
(string)
Reads arguments from the JSON string provided. The JSON string follows the format provided by --generate-cli-skeleton
. If other arguments are provided on the command line, those values will override the JSON-provided values. It is not possible to pass arbitrary binary values using a JSON-provided value as the string will be taken literally. This may not be specified along with --cli-input-yaml
.
--generate-cli-skeleton
(string)
Prints a JSON skeleton to standard output without sending an API request. If provided with no value or the value input
, prints a sample input JSON that can be used as an argument for --cli-input-json
. Similarly, if provided yaml-input
it will print a sample input YAML that can be used with --cli-input-yaml
. If provided with the value output
, it validates the command inputs and returns a sample output JSON for that command. The generated JSON skeleton is not stable between versions of the AWS CLI and there are no backwards compatibility guarantees in the JSON skeleton generated.
--debug
(boolean)
Turn on debug logging.
--endpoint-url
(string)
Override command’s default URL with the given URL.
--no-verify-ssl
(boolean)
By default, the AWS CLI uses SSL when communicating with AWS services. For each SSL connection, the AWS CLI will verify SSL certificates. This option overrides the default behavior of verifying SSL certificates.
--no-paginate
(boolean)
Disable automatic pagination. If automatic pagination is disabled, the AWS CLI will only make one call, for the first page of results.
--output
(string)
The formatting style for command output.
--query
(string)
A JMESPath query to use in filtering the response data.
--profile
(string)
Use a specific profile from your credential file.
--region
(string)
The region to use. Overrides config/env settings.
--version
(string)
Display the version of this tool.
--color
(string)
Turn on/off color output.
--no-sign-request
(boolean)
Do not sign requests. Credentials will not be loaded if this argument is provided.
--ca-bundle
(string)
The CA certificate bundle to use when verifying SSL certificates. Overrides config/env settings.
--cli-read-timeout
(int)
The maximum socket read time in seconds. If the value is set to 0, the socket read will be blocking and not timeout. The default value is 60 seconds.
--cli-connect-timeout
(int)
The maximum socket connect time in seconds. If the value is set to 0, the socket connect will be blocking and not timeout. The default value is 60 seconds.
--cli-binary-format
(string)
The formatting style to be used for binary blobs. The default format is base64. The base64 format expects binary blobs to be provided as a base64 encoded string. The raw-in-base64-out format preserves compatibility with AWS CLI V1 behavior and binary values must be passed literally. When providing contents from a file that map to a binary blob fileb://
will always be treated as binary and use the file contents directly regardless of the cli-binary-format
setting. When using file://
the file contents will need to properly formatted for the configured cli-binary-format
.
--no-cli-pager
(boolean)
Disable cli pager for output.
--cli-auto-prompt
(boolean)
Automatically prompt for CLI input parameters.
--no-cli-auto-prompt
(boolean)
Disable automatically prompt for CLI input parameters.